Chow motives versus noncommutative motives

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bloch’s Conjecture and Chow Motives

Let X be a connected smooth projective complex surface. J. Murre [7] constructed a decomposition of Chow motives for X , i.e. there exist mutually orthogonal idempotents πi ∈ CH (X × X)Q as correspondences for 0 ≤ i ≤ 4 such that ∑ i πi is equal to the diagonal and the action of πi on H (X,Q) is the identity for i = j, and vanishes otherwise. The decomposition is not uniquely characterized by t...

متن کامل

Kontsevich’s Noncommutative Numerical Motives

In this note we prove that Kontsevich’s category NCnum(k)F of noncommutative numerical motives is equivalent to the one constructed by the authors in [14]. As a consequence, we conclude that NCnum(k)F is abelian semi-simple as conjectured by Kontsevich.

متن کامل

Jacobians of Noncommutative Motives

In this article one extends the classical theory of (intermediate) Jacobians to the “noncommutative world”. Concretely, one constructs a Q-linear additive Jacobian functor N 7→ J(N) from the category of noncommutative Chow motives to the category of abelian varieties up to isogeny, with the following properties: (i) the first de Rham cohomology group of J(N) agrees with the subspace of the odd ...

متن کامل

Noncommutative Artin Motives

In this article we introduce the category of noncommutative Artin motives as well as the category of noncommutative mixed Artin motives. In the pure world, we start by proving that the classical category AM(k)Q of Artin motives (over a base field k) can be characterized as the largest category inside Chow motives which fully-embeds into noncommutative Chow motives. Making use of a refined bridg...

متن کامل

Grothendieck Chow-motives of Severi-Brauer varieties

For any central simple algebra, the Grothendieck Chow-motive of the corresponding Severi-Brauer variety is decomposed in a direct sum where each summand is a twisted motive of the Severi-Brauer variety corresponding to the underlying division algebra. It leads to decompositions in other theories (for instance, of K-cohomologies) because of the universal property of the Chow-motives. In the seco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Noncommutative Geometry

سال: 2013

ISSN: 1661-6952

DOI: 10.4171/jncg/134